

ADDITIVE MANUFACTURING TECHNOLOGY (ME711PE)

I. COURSE PURPOSE:

This course bridges gap between idea and production. Rapid prototyping is a group of methods used to rapidly manufacture a scale model of a physical part or assembly using three-dimensional computer aided design (CAD), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data. Construction of the part or assembly is usually done using 3D printing technology. Rapid prototyping techniques are often referred to solid free; computer automated manufacturing, form fabrication. This course covers the knowledge of rapid prototyping systems.

II. PREREQUISITE(S):

Manufacturing process, Engineering Materials

III. COURSE OBJECTIVES:

S.No	Course Objectives
1	To Understand the Rapid Prototype process.
2	Identify the application for rapid prototyping.
3	To Understand the Application for Liquid based rapid prototyping systems
4	To Understand the Application for powder based rapid prototyping systems
5	To Understand the Rapid Prototyping Data Formats

IV. COURSE OUTCOMES:

		Bloom's					
		Taxonomy					
S.No	Course Outcomes(CO)	Level					
At the	At the end of the course, students should be able to:						
~~1	Describe various CAD issues for 3D printing and rapid prototyping and						
COI	related operations for STL model manipulation.	L1, L2, L3					
	Formulate and solve typical problems on reverse engineering for surface						
CO2	reconstruction from physical prototype models through digitizing and						
	spline-based surface fitting.	L1, L2, L3					
	Formulate and solve typical problems on reverse engineering for surface						
CO3	reconstruction from digitized mesh models through topological modelling						
	and subdivision surface fitting.	L1, L2, L3					
	Explain and summarize the principles and key characteristics of additive						
CO4	manufacturing technologies and commonly used 3D printing and additive						
	manufacturing systems.	L1, L2, L3					
COS	Explain and summarize typical rapid tooling processes for quick batch						
	production of plastic and metal parts.	L1, L2, L3					

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

		Proficiency
Program Outcomes(PO)	Level	assessed by

PO1	Engineering Knowledge: Capability to apply knowledge of Mathematics, Science Engineering in the field of Mechanical Engineering	3	Seminar
PO2	Problem Analysis: An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of Mathematics, Science and Engineering.	3	Seminar
PO3	Design/ Development of solution: Competence to design a system, component or process to meet societal needs within realistic	1	Projects
PO4	Conduct Investigation of complex problems: To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	1	Projects
PO5	Modern Tool usage: An ability to formulate solve complex engineering problems using modern engineering and information technology tools.	N	Projects
PO6	The Engineer society: To utilize the engineering practices, techniques, skills to meet needs of health, safety legal, cultural and societal issues.	N	
PO7	Environment and Sustainability: To understand the impact of engineering solution in the societal context and demonstrate the knowledge for sustainable development.	N	
PO8	Ethics: An understanding and implementation of professional and Ethical responsibilities.	N	
PO9	Individual Team work: To function as an effective individual and as a member or leader in multi-disciplinary environment and adopt in diverse	Ν	
PO10	Communication: An ability to assimilate, comprehends, communicate, give and receive instructions to present effectively with engineering community and society.	Ν	
PO11	Project Management and Finance: An ability to provide leadership in managing complex engineering project at multi-disciplinary environment and to become a professional engineer.	N	
PO12	Life-Long learning: Recognition of the need and an ability to engage in lifelong learning to keep abreast with technological changes.	1	Projects

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Outcomes(PO)	Level	Proficiency assessed by
PSO1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical system including allied engineering streams.	3	Lectures, Seminars

PSO2	Design/ Analysis: An ability to adapt and integrate current technologies in the design and manufacturing domain to enhance the employability.	2	Projects	
PSO3	Successful Career and Entrepreneurship: To build the nation by imparting technological inputs and managerial skills to become Technocrats.	2	Guest Lectures	

VII. JNTUH SYLLABUS

UNIT - I

Introduction: Prototyping fundamentals, Historical development, Fundamentals of Rapid Prototyping, Advantages, and Limitations of Rapid Prototyping, Commonly used Terms, Classification of RP process, Rapid Prototyping Process Chain: Fundamental Automated Processes, Process Chain.

UNIT - II

Liquid-based Rapid Prototyping Systems: Stereo lithography Apparatus (SLA): Models and specifications, Process, working principle, photopolymers, photo polymerization, Layering technology, laser and laser scanning, Applications, Advantages and Disadvantages, Case studies. Solid ground curing (SGC): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies Solid-based RapidPrototyping Systems: Laminated Object Manufacturing (LOM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Fused Deposition Modeling (FDM): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies.

UNIT - III

Powder Based Rapid Prototyping Systems: Selective laser sintering (SLS): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Three dimensional Printing (3DP): Models and specifications, Process, working principle, Applications, Advantages and Disadvantages, Case studies. Rapid Tooling: Introduction to Rapid Tooling (RT), Conventional Tooling Vs RT, Need for RT. Rapid Tooling Classification; Indirect Rapid Tooling Methods: Spray Metal Deposition, RTV Epoxy Tools, Ceramic tools, Investment Casting, Spin Casting, Die casting, Sand Casting, 3D Keltool process. Direct Rapid Tooling : Direct AIM, LOM Tools, DTM Rapid Tool Process, EOS Direct Tool Process and Direct Metal Tooling using 3DP

UNIT - IV

Rapid Prototyping Data Formats: STL Format, STL File Problems, Consequence of Building Valid and Invalid Tessellated Models, STL file Repairs: Generic Solution, Other Translators, Newly Proposed Formats. Rapid Prototyping Software's: Features of various RP software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, Rhino, STL View 3 Data Expert and 3 D doctor.

UNIT - V

RP Applications : Application - Material Relationship, Application in Design, Application in Engineering, Analysis and Planning, Aerospace Industry, Automotive Industry, Jewelry Industry, Coin Industry, GIS application, Arts and Architecture. RP Medical and Bioengineering Applications: Planning and simulation of complex surgery, Customized Implants & Prosthesis, Design and Production of Medical Devices, Forensic Science and Anthropology, Visualization of Biomolecules.

TEXT BOOKS:

Rapid prototyping; Principles and Applications /Chua C.K., Leong K.F. and LIM C.S/World Scientific Publications

Rapid Manufacturing /D.T. Pham and S.S. Dimov/Springer

REFERENCE BOOKS:

Terry Wohlers, Wholers Report 2000, Wohlers Associates Rapid Prototyping and Manufacturing /PaulF.Jacobs/ASME

1		Introducti on: Rapid prototypin g fundament als	Introduction , Definition Types of prototype	https://dri ve.google. com/drive/ folders/10 wSghrIk7 Zb63G4Pr blfjjmFjn B8jf1N?us p=sharing	https://dr ive.googl e.com/dri ve/folder s/15- x7JT0r3t d7wEYV Z4Xi6i8 HGPZK S6bh?us p=sharin g	L2- Underst and	Board and PPT	OR/T aha/P HI
2	1	Historical developme nt	Introduction First Phase Second Phase Third phas	https://dri ve.google. com/drive/ folders/10 wSghrIk7 Zb63G4Pr blfjjmFjn B8jf1N?us p=sharing	https://dr ive.googl e.com/dri ve/folder s/15- x7JT0r3t d7wEYV Z4Xi6i8 HGPZK S6bh?us p=sharin g	L2- Underst and	Board and PPT	OR/T aha/P HI
3		Fundamen tals of Rapid Prototypin g	CAD CAM STL file format Slice	https://dri ve.google. com/drive/ folders/10 wSghrIk7 Zb63G4Pr blfjjmFjn B8jf1N?us	https://dr ive.googl e.com/dri ve/folder s/15- x7JT0r3t d7wEYV Z4Xi6i8	L2- Underst and	Board and PPT	OR/T aha/P HI

LESSON PLAN- COURSE SCHEDULE (WEEK-WISE):

				p=sharing	HGPZK S6bh?us p=sharin g		Caroline was and		
4			1			1	I		
5		Advantage s and Limitation s of Rapid Prototypin g	Introduction Application s Direct benefits Benefits to the Tooling and Manufacturi ng Engineer Benefits to marketing	https://dr ive.googl e.com/dri ve/folder s/10wSg hrIk7Zb6 3G4Prblf jjmFjnB 8jf1N?us p=sharin g	https://driv e.google.c om/drive/f olders/15- x7JT0r3td 7wEYVZ4 Xi6i8HGP ZKS6bh?u sp=sharing		L2- Underst and	Board and PPT	OR/T aha/P HI
6		Classificat ion of RP process	Introduction Liquid bases Powdered base Solid based	https://dr ive.googl e.com/dri ve/folder s/10wSg hrIk7Zb6 3G4Prblf jjmFjnB 8jf1N?us p=sharin g	https://driv e.google.c om/drive/f olders/15- x7JT0r3td 7wEYVZ4 Xi6i8HGP ZKS6bh?u sp=sharing		L2- Underst and	Board and PPT	OR/T aha/P HI
7		Commonl y used Terms	RP RPTM Direct CAD Manufacturi ng, Desktop Manufacturi ng and Instant Manufacturi ng	https://dr ive.googl e.com/dri ve/folder s/1OwSg hrIk7Zb6 3G4Prblf jjmFjnB 8jf1N?us p=sharin g	https://driv e.google.c om/drive/f olders/15- x7JT0r3td 7wEYVZ4 Xi6i8HGP ZKS6bh?u sp=sharing		L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
8				Student l	PPT	T	Γ		
9	2	Stereolitho graphy Apparatus (SLA)	Introduction , Application Overview	https://dr ive.googl e.com/dri ve/folder s/1e8WU - u_XPEFf bqbuV- OXF7Kq EV_t_2s I?usp=sh aring	https://driv e.google.c om/drive/f olders/16x 4z7peKI3 36QZWK 1igRADNI J59JymjJ? usp=sharin g		L1 & L2 Underst and	Board and PPT	OR/T aha/P HI

10	Models and specificati ons	Introduction Products Models and specificatio ns SLA 250/30A SLA 250/50 SLA-250/50 HR SLA 3500	https://dr ive.googl e.com/dri ve/folder s/1e8WU - u_XPEFf bqbuV- OXF7Kq EV_t_2s I?usp=sh aring	https://driv e.google.c om/drive/f olders/16x 4z7peKI3 36QZWK 1igRADNI J59JymjJ? usp=sharin g		L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
11	SLA working principles	Introduction Process Resin Laser Part manger module Slice module	https://dr ive.googl e.com/dri ve/folder s/1e8WU = u_XPEFf bqbuV- OXF7Kq EV_t_2s I?usp=sh aring	https://driv e.google.c om/drive/f olders/16x 4z7peKI3 36QZWK 1igRADNI J59JymjJ? usp=sharin g		L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
12		1	Student I	PPT	1			
13	Photopoly mers, Photo polymeriz ation	Introduction Electron- beam (EB) SLA Photo polymerizat ion PMMM	https://dr ive.googl e.com/dri ve/folder s/1e8WU = u_XPEFf bqbuV- OXF7Kq EV_t_2s I?usp=sh aring	https://driv e.google.c om/drive/f olders/16x 4z7peKI3 36QZWK 1igRADNI J59JymjJ? usp=sharin g		L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
14	Layering technolog y	Introduction laser and laser scanning Application s Advantages and Disadvantag es	https://dr ive.googl e.com/dri ve/folder s/1e8WU = u_XPEFf bqbuV- OXF7Kq EV_t_2s I?usp=sh aring	https://driv e.google.c om/drive/f olders/16x 4z7peKI3 36QZWK 1igRADNI J59JymjJ? usp=sharin g		L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
15	Solid ground curing	Introduction Theory Models and	https://dr ive.googl e.com/dri	https://driv e.google.c om/drive/f		L1 & L2 Underst	Board and PPT	OR/T aha/P HI

							25	23	
		(SGC)	specificatio	ve/folder	olders/16x		and		
		, ,	ns	s/1e8WU	4z7peKI3				
			Process	-	360ZWK				
			1100055	11 YPEEf	ligRADN1				
				u_ALLIT babuV	1501vmil2				
				bqbuv-	J39JymjJ?				
				OXF/Kq	usp=sharin				
				EV_t_2s	g				
				I?usp=sh					
				aring					
		Student							
		РРТ							
16	1			Student l	РРТ	•	•		
			Laminated						
			Object						
			Manufacturi	https://dr					
			ng (LOM)	ive googl	https://driv				
			Models and	a com/dri	a googla a				
					e.google.c				
		Solid-	specificatio	ve/folder	om/drive/I				
		based	ns	s/le8WU	olders/16x			Board	OR/T
17		Rapid	Process	-	<u>4z7peKI3</u>		L3	and	aha/P
11		Drototypin	working	u_XPEFf	<u>36QZWK</u>		apply	DDT	
		a Systema	principle	bqbuV-	<u>ligRADN1</u>			111	111
		g Systems.	Application	OXF7Kq	J59JymjJ?				
			s.	EV t 2s	usp=sharin				
			Advantages	I?usp=sh	σ				
			and	aring	4				
			Disadvantag	aring					
			Disacivalitag						
10		Fused		1	1		T 1 0	D 1	
18			Models and	https://d	https://driv		LI&	Board	OR/T
				https://dr					
				ive.googl	https://driv				
				e.com/dri	e.google.c				
		Fused		ve/folder	om/drive/f				
		Deposition		s/1e8WU	olders/16x				
		Modeling		5/100/00	Az7neK13		13	Board	OR/T
19		(EDM)		- N VDEEf	$\frac{4Z/\text{perces}}{2607WK}$		annly	and	aha/P
				$u_{\Lambda} LT$	$\frac{3002 \text{WK}}{1.22}$		appiy	PPT	HI
		case		OVETV	<u>IIGKADNI</u>				
		studies	T . 1	UXF/Kq	<u>J59JymJJ?</u>				
			Introduction	EV_t_{2s}	<u>usp=sharin</u>				
			Examples	l?usp=sh	g				
			Case Studie	aring					
20			1	Student l	РРТ	1	1		
				https://dr	https://driv				
				ive.googl	e.google.c				
				e.com/dri	om/drive/f		T 1 0		
		FDM for		ve/folder	olders/16x			Board	OR/T
21		Production		s/1e8WU	4z7neKI3		L2	and	aha/P
-1		Tooling	Introduction	_	3607WK		Underst	ррт	HI
		roomg	Application	U VDEEf			and	111	111
			Application						
			S (oqouv-	12217mll;				
			Concepts	OXF7Kq	usp=sharm				

								A CONTRACTOR				
								ND PARTING VALUE (INSE	DEDUCATION			
					EV_t_2s I?usp=sh aring	g						
2	2		Powder Based Rapid Prototypin g Systems	Introduction Application s Models Advantages and Disadvantag es	https://dr ive.googl e.com/dri ve/folder s/1IYtuN JHSIVsF KltGVTf k78YNz Ca5cOk M?usp=s haring	https://driv e.google.c om/drive/f olders/1R YSW36Y K47SRD4 rxSPR- gq3Oh- 8eDOmd? usp=sharin g		L3 & L4 Apply and Analyz e	Board and PPT	OR/T aha/P HI		
2	3		Selective laser sintering (SLS)	Introduction Models and specificatio ns, Process Working Principle	https://dr ive.googl e.com/dri ve/folder s/11YtuN JHSIVsF KltGVTf k78YNz Ca5cOk M?usp=s haring	https://driv e.google.c om/drive/f olders/1R YSW36Y K47SRD4 rxSPR- gq3Oh- &eDOmd? usp=sharin g		L3 & L4 Apply and Analyz e	Board and PPT	OR/T aha/P HI		
2	4	3			Student l	PPT	I					
2	5		SLS Applicatio ns	Advantages Disadvantag es Case studies.	https://dr ive.googl e.com/dri ve/folder s/11YtuN JHSIVsF KltGVTf k78YNz Ca5cOk	https://driv e.google.c om/drive/f olders/1R YSW36Y K47SRD4 rxSPR- gq3Oh- 8eDOmd?		L2 Underst and	Board and PPT	OR/T		
2	6				Three	Introduction	M?usp=s haring <u>https://dr</u> ive.googl e.com/dri <u>ve/folder</u> s/11YtuN <u>JHSIVsF</u> KltGVTf k78YNz Ca5cOk <u>M?usp=s</u> haring	<u>usp=sharin</u> <u>g</u> <u>https://driv</u>		L1, L2,	Board	aha/P HI OR/T
			Deposition Modeling (FDM)	specificatio ns Process working	rive.goog le.com/dr ive/folde rs/1e8W	e.google.c om/drive/f olders/16x 4z7peKI3		L2 Underst and	and PPT	aha/P HI		

							25	RY .	
			principle	<u>U-</u>	<u>36QZWK</u>				
			Application	<u>u_XPEFf</u>	<u>ligRADN1</u>				
			s,	<u>bqbuV-</u>	<u>J59JymjJ?</u>				
			Advantages	<u>OXF7Kq</u>	<u>usp=sharin</u>				
			and	EV_t_{2s}	g				
			Disadvantag	<u>I?usp=sh</u>					
			es	<u>aring</u>					
				https://dr	https://driv				
				ive.googl	<u>e.google.c</u>				
				e.com/dri	om/drive/f				
			Advantages	ve/folder	olders/1R				
		(3DP)	Disadvantag	s/1IYtuN	<u>YSW36Y</u>			Board	OR/T
27		Applicatio	es	JHSlVsF	<u>K47SRD4</u>			and	aha/P
		ns	Case studies	KltGVTf	<u>rxSPR-</u>			PPT	HI
				k78YNz	<u>gq3Oh-</u>				
				Ca5cOk	<u>8eDOmd?</u>		L1, L2,		
				M?usp=s	<u>usp=sharin</u>		L3 and		
				haring	g		L4		
28			1	Student l	PPT	1			
				https://dr	https://driv				
				ive.googl	<u>e.google.c</u>				
				e.com/dri	<u>om/drive/f</u>				
			Introduction	ve/folder	olders/1R				
		Ranid	Rapid	s/1IYtuN	<u>YSW36Y</u>		L2	Board	OR/T
29		Tooling	Tooling	JHSlVsF	<u>K47SRD4</u>		Underst	and	aha/P
		roomig	(RT	KltGVTf	<u>rxSPR-</u>		and	PPT	HI
				k78YNz	<u>gq3Oh-</u>				
				Ca5cOk	8eDOmd?				
				M?usp=s	<u>usp=sharin</u>				
				haring	g				
				https://dr	https://driv				
			Convention	ive.googl	<u>e.google.c</u>				
			al Tooling	e.com/dri	om/drive/f				
			Vs RT	ve/folder	olders/1R				0 D (T
		Rapid	Need for	s/11YtuN	<u>YSW36Y</u>		L2	Board	OR/T
30		Tooling	RT	JHSIVsF	<u>K47SRD4</u>		Underst	and	aha/P
			Rapid	KltGVTf	rxSPR-		and	PPT	HI
			Tooling	k/8YNz	<u>gq3Oh-</u>				
			Classificatio	CaScOk	8eDOmd?				
			n	M?usp=s	usp=sharin				
				naring	<u>g</u>				
				https://dr	nttps://driv				
				ive.googl	e.google.c				
				e.com/dr1	om/drive/f				
		Indirect	Introduction	ve/tolder	olders/1K		1.2	ר ח 1	
21		Rapid	Theory	s/IIYtuN	YSW36Y		L2	Board	OR/T
51		Tooling	Classificatio	JHSIVSF	K4/SKD4		Underst	and	ana/P
		Methods	n	KItGVTT	rxSPR-		and	PPT	HI
				K/8YNZ	gq3Oh-				
			N	CascOk	seDOmd?				
				M?usp=s	usp=sharin				
				haring	g				

						AD-ARCENCE BASE	DEDUCATION	
32				Student l	PPT	ŕ		
33		Investmen t Casting	Introduction Application sCase studiesFreez e Cast Process (FCP)	https://dr ive.googl e.com/dri ve/folder s/11YtuN JHSIVsF KltGVTf k78YNz Ca5cOk M?usp=s haring	https://driv e.google.c om/drive/f olders/1R YSW36Y K47SRD4 rxSPR- gq3Oh- 8eDOmd? usp=sharin g	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
34		Direct Rapid Tooling	Introduction Application s Case studies Direct AIM, LOM Tool	https://dr ive.googl e.com/dri ve/folder s/1IYtuN JHSIVsF KltGVTf k78YNz Ca5cOk M?usp=s haring	https://driv e.google.c om/drive/f olders/1R YSW36Y K47SRD4 rxSPR- gq3Oh- 8eDOmd? usp=sharin g	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
35		DTM Rapid Tool Process	Introduction Application s Overview Tool Process Tooling methods	https://dr ive.googl e.com/dri ve/folder s/1IYtuN JHSIVsF KltGVTf k78YNz Ca5cOk M?usp=s haring	https://driv e.google.c om/drive/f olders/1R YSW36Y K47SRD4 rxSPR- gq3Oh- 8eDOmd? usp=sharin g	L3 & L4 Apply and Analyz e	Board and PPT	OR/T aha/P HI
		dimension al Printing (3DP)	Models and specificatio ns, Process Working Principle		e.google.c om/drive/f olders/1R YSW36Y K47SRD4 rxSPR- gq3Oh- 8eDOmd? usp=sharin g	L3 and L4	and PPT	aha/P HI
36				Student I	PPT	 		
37	4	Rapid Prototypin g Data Formats	Introduction Format types Other Translators RP	https://dr ive.googl e.com/dri ve/folder s/1h_EP MPH4bq 1TjHk6	https://driv e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp	L3 & L4 Apply and Analyz e	Board and PPT	OR/T aha/P HI

					BIPARTING VALUE BASE	DEDUCATION	
		Software's	mQY5R Dw1IOF GUXdL? usp=shar ing	FQEUvZ w?usp=sh aring			
38	STL Format	Introduction Definition STL File Problems Consequenc e of Building Valid and Invalid Tessellated Models	https://dr ive.googl e.com/dri ve/folder s/1h_EP MPH4bq 1TjHk6 mQY5R Dw1IOF GUXdL? usp=shar ing	https://driv e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp FQEUvZ w?usp=sh aring	L3 & L4 Apply and Analyz e	Board and PPT	OR/T aha/P HI
39	STL file Repairs:	Introduction Generic Solution Other Translators Newly Proposed Formats	https://dr ive.googl e.com/dri ve/folder s/1h_EP MPH4bq 1TjHk6 mQY5R Dw1IOF GUXdL? usp=shar ing	https://driv e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp FQEUvZ w?usp=sh aring	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
40			Student l	PPT			
41	Rapid Prototypin g Software's	Features of various RP software's Magics, Mimics Solid	https://dr ive.googl e.com/dri ve/folder s/1h_EP MPH4bq 1TjHk6 mQY5R Dw1IOF GUXdL? usp=shar ing	https://driv e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp FQEUvZ w?usp=sh aring	L2 Underst and	Board and PPT	OR/T aha/P HI
42	STL View	Introduction View Expert 3 D View Velocity 2	https://dr ive.googl e.com/dri ve/folder s/1h_EP MPH4bq 1TjHk6 mQY5R Dw1IOF GUXdL?	https://driv e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp FQEUvZ w?usp=sh aring	L2 Underst and	Board and PPT	OR/T aha/P HI

							AND ANTING VALUE DASE	DEDucanoy	
				usp=shar				1	
				ing					
43	1		1	Student l	РРТ				
44		Special algorithms	Introduction Two or more gaps formed from a coincidental vertex. Degenerate facets. Overlapping facet	https://dr ive.googl e.com/dri ve/folder s/1h_EP MPH4bq 1TjHk6 mQY5R Dw1IOF GUXdL? usp=shar ing	https://driv e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp FQEUvZ w?usp=sh aring		L2 Underst and	Board and PPT	OR/T aha/P HI
45		OTHER	Introduction	https://d	https://driv		L2	Board	OR/T
46		Newly	Introduction	https://dr	https://driv		L2	Board	OR/T
47		RP Applicatio ns	Introduction Classificatio ns Application s Materials Design Engineering Analysis and planning	https://dr ive.googl e.com/dri ve/folder s/1h_EP MPH4bq 1TjHk6 mQY5R Dw11OF GUXdL? usp=shar ing	https://driv e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp FQEUvZ w?usp=sh aring		L2 Underst and	Board and PPT	OR/T aha/P HI
48	5	Material Relationsh ip	Introduction Finishing Process Machining: milling Lathe boring, grinding, etc.	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q002B q3V- W?usp=s haring	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng		L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
49		APPLICA TIONS IN DESIGN	CAD Model Verification Visualizing Objects Proof of Concept Commercial Application	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q002B q3V-	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng		L1 & L2 Underst and	Board and PPT	OR/T aha/P HI

					A DE LE		
					UNPARTING VALUE BASE	DEDUCATION	
			<u>W?usp=s</u> <u>haring</u>			~	
50	APPLICA TIONS IN ENGINEE RING, ANALYSI S AND PLANNIN G	Introduction Scaling Form and Fit Flow Analysis Stress Analysis Mock-Up Parts	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q0O2B q3V- W?usp=s haring	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
51	APPLICA TIONS IN MANUFA CTURIN G AND TOOLIN G	Introduction Tooling classificatio n Soft Tooling Hard Tooling Direct and Indirect	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q002B q3V- W?usp=s haring	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
52	Indirect Soft Tooling	Introduction Arc Spray Metal Tooling Silicon Rubber Molds Spin Casting with Vulcanized Rubber Mold Castable Resin Mold Castable Ceramic Molds Plaster Molds	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q0O2B q3V- W?usp=s haring	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
53	Direct Hard Tooling	Introduction RapidTool Laminated Metal Tooling	https://dr ive.googl e.com/dri ve/folder s/1WXL	https://driv e.google.c om/drive/f olders/13z abogvuseq	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI

		Direct Metal Laser Sintering (DMLS) Tooling ProMetalT M Rapid Toolin	TBbW13 0CuhCw xZMa63 5Q0O2B q3V- W?usp=s haring	NpsWhcw Gdg3i- dru88EwB ?usp=shari ng			
	TRANSI ATORS	IGS file HP/GL File CT Data	rive.goog le.com/dr ive/folde rs/1h_EP MPH4bq 1TjHk6 mQY5R Dw1IOF GUXdL? usp=shar ing	e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp FQEUvZ w?usp=sh aring	Underst and	and PPT	aha/P HI
54	Indirect Hard Tooling	3D Keltool EDM Electrodes Ecotool Copy Milling	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q0O2B q3V- W?usp=s haring	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
55	Applicat ns in Aerospa Industry	io Introduction Application areas Gas turbine engine Fanjet Engine Production castings	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q002B q3V- W?usp=s haring	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
56	Applicat ns in automoti e industr	io y io io io io io io io io io io	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q002B	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI

					5	ES.	
		Structure	q3V- W?usp=s haring	ng			
	proposed formats	SLC File Definitions and terms SLC File Specificatio ns Data formats	ive.googl e.com/dri ve/folder s/1h_EP MPH4bq 1TjHk6 mQY5R Dw1IOF GUXdL? usp=shar ing	e.google.c om/drive/f olders/1D 0HJbZwU Sjzed7rIB 4qLItCpp FQEUvZ w?usp=sh aring	Underst	and PPT	aha/P HI
57	Other Industries	Biomedical Brain tumor surgey Needle design Knee implants Tissue engineering \ Inter- Vertebral Spacers	https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q0O2B q3V- W?usp=s haring	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI
58	Revison		https://dr ive.googl e.com/dri ve/folder s/1WXL TBbW13 0CuhCw xZMa63 5Q0O2B q3V- W?usp=s haring	https://driv e.google.c om/drive/f olders/13z abogvuseq NpsWhcw Gdg3i- dru88EwB ?usp=shari ng	L1 & L2 Underst and	Board and PPT	OR/T aha/P HI

VIII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OFPROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

IX. QUESTION BANK JNTUH

Unit I : Short Answer Questions:

]	Progr	am O	utcon	nes (I	PO)				F S O	Progran Specifi utcom (PSO)	n c es	
Course Outcomes	PO1	P02	P03	P04	PO5	PO6	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2	PSO3	\
C01	2	2										2	2	2		
C02	1	2	2										1	2		
C03	1	2	1										2		1	
C04	2	1											2	1		
C05	2	1											2	1	1	

Q.No	Questions	Bloom's Taxonomy Level	Course Outcome
1	Why rapid prototyping is important in industries.	Understand	2
2	How rapid prototyping systems are classified. Give the example for each classification.	Understand	2
3	Explain the key aspects of rapid prototype technologies.	Understand	2
4	What meant by rapid prototype. What are the roles of prototype in development process.	Understand	2
5	Explain in detail the common information work flow indicating the main stage of rapid prototyping system work flow.	Understand	2
6	Describe the steps involved in rapid process chain.	Understand	2
7	Briefly classify the rapid prototyping systems	Understand	2
8	List out the advantages of rapid prototyping process	Understand	2
9	"Establish a statement that rapid prototyping is limited to some application" Justify your statement.	Understand	2
10	Explain the limitations of rapid prototyping.	Understand	2
11	Establish a statement how rapid prototyping is used in automation.	Understand	2
12	Explain rapid prototyping. Classification of rapid prototyping system.	Understand	2
Unit I	: Long Answer Questions:		

1	Explain the history of rapid prototyping systems and its		
1	fundamental development.	Knowledge	1
2	Explain the need of rapid prototyping	Knowledge	1
3	List out the classification of rapid prototype systems.	Knowledge	1
4	Explain in detail the process chain rapid prototyping.	Knowledge	1

		ZE	FES
5	Discuss limitations of rapid prototyping explain in detail.	Knowledge	1
6	Write short notes on advantages of rapid prototyping.	Knowledge	1
7	Classify rapid prototyping and give its basic principle.	Knowledge	1
Unit I	I : Short Answer Questions:		
1	Define the fundamental principle of stereo lithography process.	Understand	2
2	Explain alternating direction implicit method.	Understand	2
3	Define fused deposition modeling.	Knowledge	2
4	Compare solid based rapid prototyping and liquid based rapid prototyping.	Knowledge	2
5	Differentiate between stereo lithography and solid ground curing.	Knowledge	2
6	Define laminated object manufacturing and specification.	Knowledge	2
7	Explain the advantages of liquid based stereo lithography.	Knowledge	2
8	Explain merits of fused deposition modeling.	Knowledge	2
9	List out the application of fused deposition modeling.	Understand	2
10	Explain laminated object manufacturing and its applications.	Understand	2
Unit I	I : Long Answer Questions:		
1	Compare and contrast the liquid-based stereo lithography systems and the solid ground curing systems. What are the advantages disadvantages for each of the systems	Understand	2
2	Explain in details the working principle of solid ground curing models with its advantages and disadvantages. Differentiate SLA and SLS in rapid prototyping	Understand	2
3	Explain merits and demerits of Laminated Object Manufacturing. Describe the principle of FDM with its advantages, disadvantages and applications	Understand	2
4	Explain with the help of simple line diagram explain the construction details of extrusion head in FDM process.	Understand	2
5	Describe Fused deposition modeling process with a neat sketch.	Understand	2
Unit I	II: Short answer questions:		
1	Explain the selective laser sintering.Process.	Understand	3
2	Explain the three dimensional printing.	Understand	3
3	Discuss the advantages and disadvantages of Selective laser sintering.	Understand	3
4	Write the applications of 3DP	Understand	3
5	Explain the powder based rapid prototyping	Knowledge	3
6	What is rapid tool and list out its advantages?	Knowledge	3
7	Differentiate soft tooling and hard tooling	Understand	3
8	What is investment casting?	Understand	3
L – –			

		2ª	FES
9	Explain vaccum casting.	Understand	3
	What are the applications of FDM models. Give an		3
10	example.	Knowledge	
	What is the need of rapid prototyping while		3
11	conventional tooling are existing.	Knowledge	
Unit I	II: Long answer Ouestions:		I
	Explain the critical factors that influence the		
1	performance and functions of Selective Laser Sintering		
	and 3-Dimentional printing.	Understand	3
	Discuss the advantages and disadvantages of powder		3
2	based rapid prototyping system and compare with liquid		
	based and solid based rapid prototyping systems	Understand	
2	Discuss the merits and demerits of selectivelaser		3
5	sintering process.	Understand	
4	Discuss the principle of three dimensional printing		3
-	process using a case study.	Understand	
5	Discuss the principle of selective laser sintering process		3
	using a case study	Understand	
6	What is rapid tooling and explain about evaporative		3
	pattern casting process	Understand	
7	Explain about evaporative pattern with a neat sketch.	Knowledge	3
8	What is rapid tooling and explain the application of		3
0	rapid prototype tool in manufacturing and tooling.	Knowledge	
9	What is rapid tooling and explain about shell investment		3
	casting process with its advantages and disadvantages.	Knowledge	
Unit I	V: Short answer questions	I	1
	Discuss on STL files and define slicing relevant to		
1	CAD.	Knowledge	4
	Explain the features of various rapid prototyping		4
2	softwares.	Knowledge	
	Explain the consequences of building valid and invalid		4
3	tessellated models.	Knowledge	
4	Explain the concept occurring errors in SH files.	Knowledge	4
5	Explain the concept of file exchange errors	Understand	4
6	Explain the data format in rapid prototyping.	Understand	4
7	Explain the softwares in rapid prototyping.	Understand	4
Unit I	V: Long answer questions	· · · · · ·	
1	Explain the STL format. Discuss the Generic and		
	dedicated solution with example.	Apply	4
	Explain the procedure of modeling, STL file creation		4
2	and layering steps before printing 3D model in RP		
2	machine for the following types of models (i)		
	Economical model. (ii) Precision model	Apply	
2	Differentiate soft tooling and hard tooling and also		4
3	Compare direct tooling and indirect tooling.	Apply	
	Explain the futures of RP software and summarize		4
4	about solid view, view expert, 3D view and STL view		
	in detail.	Apply	
5	Write short on following.	Apply	4
5	(i) Influence of building orientation.	· .hh.ì	

		20	FRI
	(ii) File exchange errors.		
	(iii) Errors in STLfiles.		
	(iv) Part building errors.		
	Explain the procedure of modeling, STL file creation		4
6	and layering steps before printing 3D model in RP		
6	machine for the following types of models (i)		
	Economical model. (ii) Precision Model	Apply	
	Differentiate soft tooling and hard tooling and Compare	11.2	4
7	direct tooling and indirect tooling	Apply	
8	Explain Arc spray metal tooling with a peat sketch	Apply	4
0	Explain Arc spray metal tooling with a heat sketch	Аррту	1
0	about solid view view expert 2D view and STL view		4
9	in detail	Apply	
TT 1 / T		Арріу	
Unit V	: Short Answer Questions		
	Explain with a suitable example the application of rapid		
1	prototyping in aerospace industry.	Knowledge	5
	Which rapid prototyping processes are best suited for		5
2	production of ceramic part, why.	Knowledge	
	How does acrospece technology make use of renid	12110 1110 480	5
2	tooling application	Knowladge	5
		Knowledge	5
	Summarize the applications of rapid prototyping in		3
4	various industries.	Understand	
	Summarize the applications of rapid protyping in		5
5	automotive sector.	Understand	
	List out the applications of rapid prototyping in		5
6	aerosnace industry	Understand	
	Generalize the statement "material relationship offects		5
7	the population of the statement in the statement is the second prototyming?	Understand	5
/		Understand	5
	Explain the application of analysis and planning in rapid		3
8	prototyping.	Understand	
	How the rapid prototyping is useful in the arts and		5
9	architecture.	Understand	
	Write the applications of customized implants and		5
10	prosthesis.	Understand	
Init V	. Long Answer Questions		
	Evolution the applications of ranid prototyming		
1	Summarize the applications of rapid prototyping.		
1	industry CIS application	Amply	5
	Industry, OIS application.	Аррту	5
2	Categorize the applications of rapid prototyping in the		3
2	areasoi customized implants and prosthesis,		
	visualization of biomolecules.	Apply	
	Discuss with a case study in automobile application.		5
3	Describe how reverse engineering will be applied to		
	rapid prototyping techniques.	Apply	
	Categorize how the material relationship will contribute		5
4	in rapid prototype technique. Specify the applications in		
	aerospace industry.	Apply	

		\mathcal{L}	
	Explain the applications of rapid prototyping.		5
5	summarize the applications in engineering, analysis,		
	aerospace industry, medical and bioengineering.	Apply	
6	Categorize the applications of rapid prototyping in the		5
	areas of planning and simulation of complex surgery,		
	customized implants, design and production of medical		
	devices.	Apply	
7	Discuss with a case study in medical application.		5
	Describe how reverse engineering will be applied to		
	rapid prototyping techniques.	Apply	
8	Categorize how the material relationship will contribute		5
	in rapid prototype technique specify the applications in		
	forensic science and anthropology	Apply	
9	Discuss with a cases study how design and production		5
	of medical devices are done by the rapid prototyping.	Knowledge	
10	Explain how forensic science and anthropology uses		5
	rapid prototyping technique.	Understand	

IX. OBJECTIVE QUESTIONS: JNTUH.

UNIT I

1. Additive mfg uses much less material than other subtractive mfg processes.

True False

2. You can send a file through a usb cable, thumb drive, or cloud server to the machine.

True False

3. File type most commonly exported from CAD software?

SLDRT JPG STL X3G

4. Which should be considered when orienting the part on the build plate in the slicing software?

Holes should always be printed horizontally

The footprint of the part should be as small as possible.

You should minimize the number of overhangs.

All of the above

5. Solidworks Design Guidance function produces much more organic and unique geometry than other modelled by the user.

True False

6.Prototype contains three aspects of interests

i)Implementation,ii)_____,iii)_____

7.Four aspects of RP, they are Input, _____, and applications.

8.All RP systems can be easily categorized into i)_____,ii)____, and____.

9. Three fundamental fabrications are i)_____, ii)_____ and iii)_____.

10.After 3D geometric modelling, a user can make a part through NC programming or through RP ? True False 11.STL files are problematic ? True False UNIT II 1. Which of the following is typically the most expensive type of 3D printer. SLA SLM FDM None of the above 2.FDM stands for Fused Deposition Modelling. True False 3.SLA stands for Stereolighting Amplification. True False 4.FDM printers can print multiple materials at one time. True False 5. Which type of printer uses an enclose build area? SLA SLS MDS **FDM** 6.New Material in a FDM printer should have material pushed through the nozzle. True False 7. You can pause a 3d print to check for material. True False 8.SLA printers automatically heat the resin. True False 9.FDM material must be oriented, strand loaded, and checked for kinks. True False 10.FDM build plates are prepared by.. Putting hair spray on it. Putting a layer of painters tape on it. Putting a glue stick layer on it. All the above **UNIT III** 1.3D printing technology is expanding and is now able to print metal parts. True False

2. Which type of 3D printer uses a pool of resin to create the solid part?

			WPATTOR WILL MADE DUCKNON	
FDM	SLA	SNL	none of the above	
3.What	material is not use	ed in 3D printi	ng?	
Nylon	ABS	PLA	PVC	
4.All ca	ad software titles c	an export 3D p	printable part files.	
True	False			
5.All 3	D parts will stick t	ogether using s	superglue to hold them.	
True	False			
6.Scali	ng a part can help	it account for s	shrinkage and make the correct final dimensions.	
True	False			
7All c	ad software titles	an export 3D	printable part files.	
True	False			
8.All 3	D parts will stick t	ogether using s	superglue to hold them.	
True	False			
9Food	l items can be prin	ted using a 3D	printer	
True	False			
UNIT 1	IV			
1.All 3	D parts will stick t	ogether using s	superglue to hold them.	
True	False			
2.Scali	ng a part can help	it account for s	shrinkage and make the correct final dimensions.	
True	False			
3.If a p	art includes a 1 mr	n rod feature,	it should be slightly undersized to fit inside a 1 mm ho	ole.
True	False			
4.A pri	nted part should be	e allowed to cu	are before testing if it fits.	
True	False			
5.Wate	r soluble material a	allows you to u	use alcohol to remove support material.	
True	False			
6.SLA	printers use isopro	pyl alcohol ba	ths to clean parts.	
Ture	False			
7.All sı	apport material car	i be removed b	by hand.	
True	False			
8.If a p	art includes a 1 mr	n rod feature, i	it should be slightly undersized to fit inside a 1 mm ho	le.
True	False			

	Another American Concept
<u>UNIT V</u>	
1.Some 3D	printer models have fixtures that mount and hold the build platform.
True	False
2.Blue pain	ters tape is the most difficult to remove from printed parts
True	False
3.Sharp edg	ges should point away from you when prying parts.
True	False
4.Solidwor other mode	ks Design Guidance function produces much more organic and unique geometry than lled by the user.
True	False
5.Typical a and	pplications of RP in industries are,, Jewellery,
6	are necessary for product manufacturing in aerospace, automobile, and biomedical
7.Classifica	tion of rapid tooling are, and
8.DLMS st	ands for
9.Stereolith	ography is used to produce
10	and are some of the components used in biomedical industry.
11.RP syste	ems can be applied to traditional systems like and
12.Some ge	eneral steps involved in the art to part process are,, and
13.Automo	bile industry uses RP techniques to produce some components like ,, and

XI. Web References:

1. http://nptel.ac.in/courses/112107077/38

2. http://web.iitd.ac.in/~pmpandey/MEL120_html/RP_document.pdf

XII. E-Text Book:

1. https://books.google.co.in/books?id=4OYcyiDUpsQC&redir_esc=y 2. <u>http://store.elsevier.com/Direct-Write-Technologies-for-Rapid-Prototyping-</u> Applications/isbn- 9780121742317/

XIII. SUBJECT EXPERTS:

- 1. N. Sinha Department of Mechanical Engineering IIT Kanpur.
- 2. Dr.P.Mallesam Department of Mechanical Engineering, MVSR, OU.